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Regional sensitivity patterns of Arctic Ocean
acidification revealed with machine learning
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Ocean acidification is a consequence of the absorption of anthropogenic carbon emissions
and it profoundly impacts marine life. Arctic regions are particularly vulnerable to rapid pH
changes due to low ocean buffering capacities and high stratification. Here, an unsupervised
machine learning methodology is applied to simulations of surface Arctic acidification from
two state-of-the-art coupled climate models. We identify four sub-regions whose boundaries
are influenced by present-day and projected sea ice patterns. The regional boundaries are
consistent between the models and across lower (SSP2-4.5) and higher (SSP5-8.5) carbon
emissions scenarios. Stronger trends toward corrosive surface waters in the central Arctic
Ocean are driven by early summer warming in regions of annual ice cover and late summer
freshening in regions of perennial ice cover. Sea surface salinity and total alkalinity reductions
dominate the Arctic pH changes, highlighting the importance of objective sub-regional
identification and subsequent analysis of surface water mass properties.
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governmental Panel on Climate Change (IPCC) Special

Report on the Ocean and Cryosphere in a Changing
Climate!. While climate variability delays the emergence of cli-
mate change signals for other properties of the Earth system, the
high signal-to-noise ratio of OA? is a clear indicator of the effects
of anthropogenic carbon emissions on the ocean surface. For
>95% of the world’s ocean, the OA signal already emerged from
the background natural variability>. The effects of acidification
are far-reaching from high-latitude ice-covered regions to tropical
warm water ecosystems, as climate models project a ubiquitous
decline in surface pH in response to increasing atmospheric
carbon dioxide concentrations?.

Global distributions of projected OA are well-documented in
the literature-6. Many of these studies that examine basin-wide
changes in OA highlight the vulnerability of the Arctic to
acidification’~13. Melting sea ice in response to climate warming
creates a larger outcrop region for waters that are depleted in
carbon dioxide - which is measured by its partial pressure in
seawater (pCO,). The freshwater from ice melt contributes to
reductions in sea surface salinity in the Central Arctic basin that
accelerates a decline in both pH and the carbonate ion saturation
states (Q)!? making the water more corrosive. Increases in stra-
tification associated with fresher and warmer waters in the
Central Arctic limit nutrient supply from below, which further
reduces values of (7. In the Greenland Sea, deeper mixed layers
also contribute to lower values of Q) while also transporting the
OA signal to the deep ocean. Import of relatively fresh North
Pacific surface water through the Bering Strait also combines with
increased input from riverine sources leading to a freshening of
the Beaufort Gyre and a reduction in surface total alkalinity!,
which is a measure of seawater buffer capacity. Rivers draining
into the Arctic are often low in alkalinity and high in pCO,
making them another major source of acidification!15,

Arctic OA can be thought of as the end result of many pro-
cesses changing on different spatial and temporal scales. Given
model biases in upper ocean stratification, salinity, mixing, and
the resolution-dependent penetration of carbon-rich Atlantic
waters!®, regions of different OA are not guaranteed to be con-
sistent across models or even with observations. Coupled models
represent these processes with varying degrees of skill. For
example, performance in simulating Arctic sea ice remains highly
variable across the CMIP6 multi-model ensemble!”. The dilution
effect of melting sea ice contributions to Arctic OA is on the same
order of magnitude as the air-sea disequilibrium of carbon
dioxide!3. Studies have also started to consider OA from a water
mass perspective and find a positive correlation between max-
imum sea surface density and depth-integrated anthropogenic
carbon uptake (C,,) among CMIP5 models!8. Higher surface
densities are linked with more transport from the ocean surface to
the interior, and this relationship provides an emergent constraint
on model projections of future carbon uptake!8.

OA is expected to have negative impacts on marine ecosystems,
partly through a reduction in the favorability of calcium carbo-
nate formation. Marine organisms derive their exoskeletons by
precipitation of aragonite and calcite. The carbonate ion satura-
tion states with respect to aragonite (,) and calcite (Q¢) are a
measure of the dissolution potential of these mineral exoskeletons
and thus the stress on marine organisms. Values of () > 1 indicate
an oversaturation, or excess of the carbonate ion species. Values
of <1 indicate undersaturation and increased competition for
carbonate substrates between biological processes and the addi-
tional hydrogen ion concentrations [H*] resulting from acid-
ification. The exact threshold of Q when organisms become
stressed is species-dependent!®, however, the dissolution of cal-
cium carbonate shells becomes increasingly likely?? at Q < 1.

O cean acidification (OA) is a central theme of the Inter-

Within the Arctic basin, these different physical and biogeo-
chemical processes driving acidification vary in space and time,
underscoring that the Arctic cannot be treated as a single entity.
Studies have sought to divide the Arctic into distinct geographical
sub-regions based on their surface properties and dominant processes
that are driving changes in OA”12. These multivariate approaches,
while successful, rely on the selection of physical and biological
variables to define these regions and vary from study to study.
Machine learning (ML) approaches have the potential to analyze sub-
basin scale OA responses in an objective way and have already been
successfully applied to observed and simulated ocean biogeochemical
datasets?!22, A water mass-based approach, coupled with the
objectivity of machine learning techniques, has the potential to
transcend model biases and the limitations of geographical bound-
aries. Such an approach provides a framework that can facilitate the
evaluation of projections of OA across different models and under
different climate change scenarios.

An adapted version of the Systematic AGgregated Eco-
province (SAGE) methodology?? is used here to objectively
identify Arctic regions of surface OA in response to future climate
forcing. The SAGE method uses unsupervised machine learning
to objectively classify ecosystem biomes that are otherwise
derived subjectively and is targeted at identifying clusters in
highly non-linear data ubiquitous in the geosciences and beyond.
We use simulation data from two state-of-the-art coupled models
developed at NOAA’s Geophysical Fluid Dynamics Laboratory
(NOAA-GFDL), described in more detail in the methods section.
The two models, GFDL-ESM4.123 and GFDL-CM424, differ in
their horizontal resolution and biogeochemical model complexity
and offer a unique opportunity to examine similarities and dif-
ferences with respect to OA. Results from historical simulations, a
lower carbon emission future climate scenario (SSP2-4.5, ssp245),
and a higher emission scenario?> (SSP5-8.5, ssp585) are analyzed
with the clustering workflow using predictors based on 20-year
averaged (2041—2060) sea surface temperature, salinity, and pH
anomalies relative to a centennial average of years 1850-1949.
The ESM4 model was run in both a “concentration-driven” mode
and an “emission-driven” mode where the latter uses a fully
prognostic CO, tracer shared by all coupled model components.
Table 1 describes the model configurations and experiments used
in this study. Model results from their respective native tri-polar
grids were remapped to a 1° x 1° spherical grid and the clustering
framework was performed independently for the ESM4 and CM4
models (see methods).

Results

Anthropogenic carbon uptake and accumulation in the Arctic.
Anthropogenic carbon uptake by the ocean is the primary driver
of OA. Both ESM4 and CM4 produce qualitatively similar pat-
terns of C,,, compared to the gridded 1° x 1° Global Ocean Data
Analysis Project version 2 (GLODAPv2) climatology?® (Fig. 1, see
methods). Based on a three-member ensemble of simulations
driven by historical climate forcing, the globally integrated
inventory of C,,, between the years 1850 and 2011 is 153.1 £ 1.6
GtC for CM4. The C,, inventory is 143.8+0.2 GtC in the
concentration-driven version of ESM4 (historical) and 178.8 +2.8
GtC in the emission-driven version (esmHistorical) of ESM4.
When accounting for additional anthropogenic carbon emissions
between 1791 and 185027 (~10-20 GtC, see methods), both the
CM4 and ESM4 esmHistorical inventories of C,,, are high com-
pared to the observed estimates (134.9 +24.0 GtC) and the suite
of CMIP5 models2” (136.6 + 14.0 GtC). The concentration-driven
ESM4 historical simulation (historical) has lower C,, uptake?8
which agrees more closely with observed estimates and the
CMIP5 ensemble.
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Table 1 Models and experiments used in this study.

Model and experiment Nominal ocean Ocean BGC Atmos. CO, Atmos. CO, Pan-Arctic average temperature
horizontal component boundary concentration in the response 2081-2100 minus
resolution condition year 2100 1850-1949

GFDL-CM4 ssp5-8.5 0.25° BLING Prescribed 103 ppm 3.5°C

GFDL-CM4 ssp2-4.5 0.25° BLING Prescribed 600 ppm 2.0°C

GFDL-ESM4 ssp5-8.5 0.5° COBALT Prescribed 103 ppm 1.8°C

GFDL-ESM4 ssp2-4.5 0.5° COBALT Prescribed 600 ppm 0.9°C

GFDL-ESM4 esm-ssp5-8.5 0.5° COBALT Interactive 109 ppm 2.2°C

conditions and Arctic average warming at the end of the 21st century are also shown.

Horizontal resolution (in degrees) represents the models’ nominal resolution on their respective native tri-polar grids. Model data were gridded to a standard 1° x 1° grid prior to analysis. The ocean
biogeochemical models used in each coupled model are listed as either the reduced complexity BLING model or the comprehensive COBALT model (see methods). The atmospheric CO, boundary

Patterns of C,,,, differ in the Arctic between the CM4 and both
versions of ESM4. The ensemble-mean pattern correlation (r2)
with the GLODAPV2 gridded climatology for the region poleward
of 65°N is 0.78 and 0.79 for the ESM4 historical and esm-hist
simulations, respectively, and 0.87 for the CM4 historical
simulation. This difference is related to the models’ representa-
tion of relatively warmer and salty water from the North Atlantic
Current flowing into and across the Arctic basin. The warm,
carbon-rich waters flow into the Arctic where they cool and flow
underneath the relatively fresher surface transpolar current. This
effect is present in CM4, which shows better agreement with the
GLODAPv2 climatology. In both versions of ESM4, water flowing
in from the North Atlantic terminates prematurely and there is
increased accumulation of C,, in the Eurasian Basin. Despite the
relative simplicity of the ocean biogeochemistry modeling
component in CM4 (see methods), the high-resolution ocean
contributes to the better representation of carbon uptake and
transport within the core of the Arctic basin and is consistent
with similar findings that explore the impact of model resolution
on C,,, accumulation and transport!.

To demonstrate the relative vulnerability of the Arctic to OA
compared to the rest of the world, we define a metric of the
acidification potential of CO, uptake for a given location (Fig. 2).
The metric is defined as the change in hydrogen ion concentra-
tion [HT] between the periods 2081-2100 and 1850-1949
normalized by the cumulative carbon uptake (C,,) over this
entire time (1850—2100). The metric defines how much OA
occurs at each model grid point per unit of C,,,; uptake and can be
interpreted as an “efficiency” that quantifies how successful global
anthropogenic carbon emissions are at leading to OA at a given
location. While the change in [HT] is positive for all locations,
cumulative carbon uptake is negative in some locations—
particularly in the tropics where persistent upwelling causes the
ocean to outgas CO, from the deep ocean to the atmosphere. The
metric is only defined for locations where there is both an
increase in [H*] and positive cumulative carbon uptake.

The largest values of the acidification potential (>100 mol [H*]
pmol~! CO,) occur globally along the edges of the tropical water
masses, in the main ACC region of the Southern Ocean, and in
the Arctic. Acidification potentials are an order of magnitude
larger in these regions compared to the rest of the world ocean.
Within the Arctic, there are regional increases in the acidification
potential along the North American coastline, with the largest
values bordering the Beaufort Sea and the Queen Elizabeth
Islands. As demonstrated in the next section, the fate of Arctic sea
ice plays a role in making this sector of the Arctic particularly
vulnerable to acidification.

Probabilistic projection and density-based clustering of arctic
acidification. An ensemble-based application of the SAGE

method to the CM4 and ESM4 projected changes in SST, SSS, and
surface pH results in four dominant clusters in the Arctic that are
broadly consistent across both models and scenarios (Fig. 3). The
three predictors were chosen as a minimal set of variables that
define surface water mass properties and acidification that are
readily available through coordinated modeling experiments such
as CMIP. The objective of this analysis is to characterize large-
scale water mass responses in the Arctic. The number of grid
points in each cluster declines as the clusters becomes smaller in
area, making the signal-to-noise ratio smaller. Thus, only clusters
where there is >50% of areal agreement between CM4 and ESM4
are considered robust, leading to the presence of unshaded
regions in this figure. The full clustering for each model and
scenario is shown in Supplemental Fig. 1.

The core of the Arctic basin is divided into two regions, a
Central Arctic Surface Water (CASW, blue) region surrounded by
a general Arctic Surface Water Region (ASW, red). Both of these
clusters exhibit declines in surface pH that are larger (0.6-0.8)
than the pan-Arctic average (Fig. 4a). The remaining two clusters
include Sub-Arctic Surface Waters (SASW, green) and North
Atlantic Surface Waters (NASW, purple), both of which exhibit
declines in surface pH that are more modest (0.5-0.6) compared
to the pan-Arctic average. The SASW cluster is the smallest
region in terms of area. The SASW cluster fails to be identified in
the lower emissions scenario for ESM4 and incorporates many of
the grid points that are defined as part of the NASW cluster in the
other models and scenarios. Since the average changes in the
surface water mass properties in this cluster closely track the pan-
Arctic average, the rest of the analysis will focus on the remaining
three clusters.

The mechanisms of high-latitude warming-induced sea ice loss
are known to be drivers of enhanced OA in the Arctic. This is
primarily through increasing the surface area of the Arctic ocean
that is in contact with the atmosphere and the freshwater dilution
effects of sea ice melt on the carbonate system balance. Summer
sea ice extent is shown in Fig. 3 for the period from the start of
the satellite era to the beginning of the future scenario simulations
(1979-2014, contours) and for the mid-21st century projections
(2041-2060, dotted region). September was chosen for this
analysis as it represents both the climatological minimum sea
extent and a proxy for multi-year ice. A threshold of 15% grid cell
coverage by sea ice was used to differentiate ice-covered versus
ice-free grid points.

The ASW cluster boundary bears rough correspondence to the
present-day September sea ice extent in all the models and
scenarios (Fig. 3). Some deviations from this relationship are
evident, especially near the Labrador Sea, the Bering Strait, and in
the Barents Sea. The location of the minimum September sea ice
extent is related to the limits of penetration of warmer, saltier
Atlantic surface waters. North Atlantic waters flow into the Arctic
basin at subsurface to intermediate depths (>150m depth),
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a. GLODAPv2 Climatology

b. GFDL-CM4 historical

c. GFDL-ESM4 historical

d. GFDL-ESM4 esm-historical
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Fig. 1 Maps of climatological and model-simulated ensemble mean (n = 3) anthropogenic carbon (C,,;) uptake for the year 2002. GLODAPv2
observationally-based gridded C,; climatology at 1° resolution (a) is compared with C,,; for GFDL-CM4 (b), the concentration-driven version of GFDL-
ESM4 (c), and the emission-driven version of GFDL-ESM4 (d). Stippling denotes grid points where the model-simulated C,,; range between the minimum
and maximum values from the historical ensemble overlaps the observational remapping error from the GLODAPv2 gridded product. Anthropogenic
carbon uptake in the models is defined as the difference between the historical simulation and the models’ preindustrial control simulation. Negative values
of C,nt in the models are possible at grid point where the local effects of carbon export by changing circulation exceeds uptake.

eroding the halocline and warming the surface ocean from
below?’. The approximate correspondence of this region to
present-day sea ice concentrations is an important observable
benchmark to identify regions where enhanced OA is likely to
occur under a future high-emissions scenario.

The CASW boundary is mostly aligned with the mid-century
September sea ice extent projections. The correspondence
between the CASW cluster boundary and the presence of
multi-year ice suggests that the CASW region of the Arctic is

the last to become ice-free in the summer and highlights the
importance of the year-round presence of sea ice in providing a
physical barrier between the ocean and increased CO, concen-
trations in the atmosphere. The approximate correspondence
between the sea ice and CASW boundaries varies across models
and scenarios, reflecting both the large internal variability of sea
ice as well as a general uncertainty in climate model projections of
future Arctic sea icel”. It is noteworthy, however, that the
information content of the sea ice change is captured by the

4 COMMUNICATIONS EARTH & ENVIRONMENT | (2022)3:91] https://doi.org/10.1038/s43247-022-00419-4 | www.nature.com/commsenv


www.nature.com/commsenv

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-022-00419-4

ARTICLE

a. GFDL-CM4 ssp585

d. GFDL-CM4 ssp245
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Fig. 2 Acidification potential of cumulative carbon uptake. Results are for GFDL-CM4 (a, d), the concentration-driven version of GFDL-ESM4 (b, e), and
the emission-driven version of GFDL-ESM4 (c). Results are shown for the higher emissions ssp585 scenario (a-¢) and lower emissions ssp245 scenario
(d, e). The acidification potential metric reflects how efficient global anthropogenic carbon emissions are at driving surface ocean acidification at each grid
point. The metric is defined as the change in surface hydrogen ion concentration (mol [H*1m~2) averaged over years 2081-2100 normalized by the time-
integrated air-sea CO, flux ( pmol CO2 m~2). Although the increase in [H*] is positive at all locations, the cumulative carbon uptake at a grid point may be
negative, especially in the tropics. Only positive values of this acidification potential metric are shown.

predictors used in the clustering algorithm (T, S, pH), whereas
previous studies”>!? relied on multiple predictors to classify this
region.

The primary water mass difference between the CASW and
ASW regions is a more rapid decline in CASW sea surface salinity
(~—2 to —2.5 p.s.u. compared with ~—1 to —2 p.s.u.) and
accompanying reduction in surface total alkalinity (~—0.1
to —0.2molm~3 compared with ~—0.05 to —0.1 mol m~3)
during the first half of the 21st century. Freshwater contributions
from sea ice melt and river runoft reduce the buffer capacity of
this region!>, and the increased exposure of surface waters
depleted in pCO, enhances carbon uptake that leads to
acidification. Surface pH changes decline more rapidly in the
ASW cluster in the first few decades of the 21st century, but the
rapid decline in the buffering capacity of the CASW cluster allows
for it to catch up to the ASW cluster during the middle and latter
half of the century. Both clusters end up with similar pH changes
by the year 2100 but have very different trajectories.

The NASW cluster includes the Greenland and Barents Seas in
all the models and scenarios. The exceptions to this pattern are
the inclusion of some North Pacific waters in the CM4 ssp585 and
ESM4 esm-ssp585 simulations, and more general sub-Arctic
waters in the ESM4 ssp245 simulation. This cluster exhibits a
modest decline in surface pH compared to the pan-Arctic
average, and the defining surface water mass feature is strong SST
warming averaging between 4 and 6 °C in the ssp585 scenarios.
The warmer water has reduced CO, solubility, and since the
origins of this water are at lower latitudes, they are more carbon-
rich than the existing water masses in the Arctic. Both factors
inhibit carbon uptake in this cluster relative to the central Arctic
clusters. The NASW cluster is also the only cluster to maintain or
even increase surface total alkalinity of ~0.05molm~2 with
nearly constant sea surface salinity. This response enhances the
buffering capacity in the cluster as well.

The air-sea CO, flux increases during the simulations for each
of the clusters. The increase in the air-sea CO, flux reflects the
increasing atmospheric concentration of carbon dioxide and the

disequilibrium with the dissolved CO, in the surface ocean. There
is an inverse relationship in the Arctic between the clusters that
exhibit the strongest decline in pH and the largest increase in the
air-sea CO, flux. The flux increases the most in the NASW
cluster, peaking at values between 1 and 2kgm~2year~! in
the middle of the 21st century before rapidly declining as the
surface water warms. The other clusters show a more gradual
increase and plateau at the end of the 21st century. The NASW
cluster is removed from the influences of coastal runoff, and
combined with warmer SSTs that help maintain the buffer
capacity, this cluster is less vulnerable to acidification than the
other clusters. Since the physical ocean contributions in these
sub-arctic waters are toward reducing carbon uptake through
changes in solubility, there is the potential that biological
mediation of carbon fluxes is important in this region given the
large increase shown in the air-sea CO, flux.

Pathways toward corrosive arctic surface waters. The impact of
OA on ecosystems can be quantified through changes in the
calcium carbonate ion saturation states, which represent carbo-
nate levels present in seawater that are available to marine
organisms. Here we analyze simulated changes in the carbonate
ion saturation state with respect to aragonite (Q24). All the clusters
across the models and scenarios considered in this study exhibit
declines in an initial baseline of Q4 of 1.5-2.5 over the historical
period that accelerate during the 21st century (Fig. 4f). The
declines are strongest under the higher emission rate ssp585 and
esm-ssp585 scenarios where most of the clusters cross the
threshold of corrosiveness (4 <1) around mid-century. The
NASW cluster in both models is an exception as ), remains
above the corrosive threshold until the late 21st century. The
delay of 2 to 3 decades compared with the pan-Arctic average is
related to stable or increasing trends in sea surface salinity that
maintain the surface water buffer capacity. The same effect is also
seen for the SASW cluster in the esm-ssp585 scenario performed
with GFDL-ESM4.
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a. GFDL-CM4 ssp585 b. GFDL-CM4 ssp245

"/ /. Insignificant B NAsw

'''''''''' 2041-2060 Sep. SIT H Asw

—— 1979-2014 Sep. SIT B CcAsw
Noise Points B SAsSwW

Fig. 3 Objectively identified clusters of Arctic Ocean acidification for GFDL-CM4 and GFDL-ESM4 simulations using the adapted SAGE methodology
(Sonnewald et al. 2020; see methods). Clusters are based on the mid-century (2041-2060) projected responses in sea surface temperature, sea surface
salinity, and surface pH temperature compared to the early historical period (1850-1949). Results from the higher emissions ssp585 scenario (a, ¢, e) and
lower emissions ssp245 scenario (b, d) are shown. Four distinct regions (shading) are present in the Arctic: the Central Arctic Surface Waters (CASW,
blue), more general Arctic Surface Waters (ASW, red), North Atlantic Surface Waters (NASW, purple), and Sub-Arctic Surface Waters (SASW, green).
Only clusters where there is >50% areal agreement between CM4 (a, b) and ESM4 (c-e) are shown. Hatching denotes grid points where <32 of the 40
iterations (80%) of the clustering workflow disagree on the cluster assignment for that point. The solid line indicates the model-simulated boundary of
September sea ice extent averages over the years 1979-2014. The dotted region indicates the model-projected September sea ice extent for the years
2041-2060. Grid points identified as noise (e.g., statistical outliers, inliers) are shaded as light gray.
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a. GFDL-CM4 ssp585 GFDL-ESM4 ssp585 GFDL-ESM4 esm-ssp585 GFDL-CM4 ssp245 GFDL-ESM4 ssp245
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Fig. 4 Simulated time series of cluster-average surface properties. Results are shown for surface pH (a), surface total alkalinity (b, mol m=2), sea surface
temperature (¢, °C), sea surface salinity (d, p.s.u.), air-sea CO, flux (e, kgm~2yr=1), and surface calcium carbonate saturation with respect to aragonite
(f, Q4, mol m—3/mol m—3) from the GFDL-CM4 (I, IV) and GFDL-ESM4 (I, IlI, V) models. Anomalies are calculated relative to the 1850-1949 average for
all variables except for Q4 where the raw time series is presented. Results are shown for the higher emissions ssp585 scenario (red shaded group) and
lower emissions ssp245 scenario (unshaded group). Time series for the pan-Arctic average (black), Central Arctic Surface Waters (CASW, blue), more
general Arctic Surface Waters (ASW, red), North Atlantic Surface Waters (NASW, purple), and Sub-Arctic Surface Waters (SASW, green) are shown.
Shading denotes the Monte Carlo-based uncertainty ranges for the single realization of each time series (see methods).

The transition to corrosive surface waters expressed as the fraction
of cluster area is remarkably abrupt in the CASW and ASW clusters
(Supplemental Fig. 2). The transition from baseline historical
conditions (~20% corrosive) to complete corrosive conditions occurs
over the course of 1-2 decades under the high carbon emissions.
Internal climate variability will play a pivotal role in determining the
exact timing of when this abrupt shift to corrosive surface water
occurs in the middle of this century. As such, the dates shown in this
study are not exact projections as they are based on a single model
family and under the lower and higher emissions scenarios
considered. An analysis that includes additional CMIP-class models,
ensemble members, and considers additional climate change
scenarios will likely result in a broader range of timing for this
abrupt change. This uncertainty poses a challenge for adaptation and
resilience efforts towards corrosive Arctic waters as the projected
timescale of the transition is likely to be shorter than the uncertainty
range of when such a transition occurs.

Internal variability limits confidence in projections of the exact
timing of the earlier transition to corrosive surface waters in the

CASW and ASW clusters relative to the pan-Arctic average when
using annual average values of Q4. The relative vulnerability of
these two clusters to changing 4 compared with the rest of the
Arctic basin is more apparent when considering changes
occurring during the annual cycle. Trends in Q4 are shown for
each month in the annual cycle for the years 2015-2050 at the
beginning of each SSP scenario (Fig. 5). Trends are shown for
surface Q4, surface pH, sea surface temperature, and sea surface
salinity. All trends are expressed in units per decade.

The strongest trends in surface (), are seen in the CASW
cluster for all models and all scenarios. Trends in Q,4 of —0.2 and
—0.25 decade™! are found in the CM4 ssp585 scenario. Trends of
—0.1 to —0.2 decade™! occur in each of the other models and
scenarios. Monthly trends in Q4 for ASW and CASW are equal to
or stronger than trends in the pan-Arctic average, while trends in
the NASW and SASW clusters are generally weaker than the pan-
Arctic average. The strongest trends in Q4 for the CASW cluster
occur in the late summer and early fall, while trends in Q4 for the
remaining clusters are strongest in the late spring and early
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summer. Trends in surface pH (—0.04 to —0.07 decade™!) are
consistent with trends in Q,, with stronger summertime trends
present for the CASW, ASW, and pan-Arctic averages. Overall,
these trends in Q4 and pH highlight the vulnerability of the
CASW  cluster to the most rapid transition to corrosive
conditions, especially in the late summer months.

The differences in trends in surface Q4 among the clusters
exhibit relationships with the monthly trends in the surface water
mass properties of temperature and salinity. The strong late
summer declines of surface Q, in the CASW cluster (—0.3 to
—0.4 p.s.u. decade™!) are consistent with strong trends toward
surface freshening and relatively weak trends in surface warming
(<0.2°C decade™!) during these same months. The SST trends in
this cluster are very small compared to trends in salinity and

indicate that surface freshening is the dominant driver of both
the acidification and the decline in the buffering capacity of these
waters. These late summer trends are also consistent with the
changes in Arctic sea ice discussed earlier. Since this cluster is
projected to retain first-year ice the longest into the 21st century,
ice-free conditions in the Arctic in the summer months have the
strongest impact on trends in acidification in this cluster
compared to other months throughout the year.

The ASW and pan-Arctic averages are projected to experience
stronger trends in SST (0.3-0.6 °C decade!) and weaker changes
in SSS (<0.02 p.s.u. decade™!) throughout the annual cycle. This
suggests that this region has already experienced changes in
surface carbonate and water mass properties in response to ice-
free summer conditions during the historical period. Since these

a. Surface 0, b. Surface pH ¢ SST d. SSS
[mol m*/mol m? decade™] [decade ] [°C decade™] [psu decade]
0.00 0.00 1.0 04
—-0.05 w -0.02 22 J\N 0.2
- -0.10 :
GFDL-CM4 \/.—-——- ooa HW 04 00 mm—"""
ssp585 =0.15 { == ————— 02
—‘"\/_._’ _0,06 ... _0'2
-0.20 T‘"‘\/ | 00 15 |
-0.25 ~0.08 -02 -04
JFMAMJ JASOND)J JFMAMJ JASOND)J JFMAMJ JASOND J JFMAMJ JASOND J
0.00 0.00
005 W -0.02
GFDL-CM4 R e | _0.04
ssp245 -0.15 __‘_._-\/
~020 -0.06
Il ]
-025 -0.08
JFMAMJ JASONDJ JFMAMJ JASONDJ JFMAMJ JASOND)J JFMAMJ JASOND J
0.00 0.00 1.0 04
_ 08
0.05 —-0.02 06 HW 0.2
-0.10 !
LEsme 01BN ool | o
sspsgs U1 TN | 06 o) —_:_—A oz TS
020y lm 00 rif=—"""--7"
~025 ~0.08 ~02 04 { M
JFMAMJ JASONDJ JFMAMJ JASONDJ JFMAMJ JASOND)J JFMAMJ JASONDJ
0.00 0.00 1.0 04
_ 08
0.05 ~002 o8 02
—0.10 | et _ s ’
GFDLESMA o5 | = | % || )
esm-ssp585  _; 5 -0.06 ’ M
. 0.0 CoP-
v v _oalIV
~025 ~008 -02 ’
JFMAMJ JASONDJ ~—°° JFMAMJJASOND)J “ JFMAMJ JASOND)J JFMAMJ JASONDJ
0.00 0.00 1.0 04
_ 08
0.05 ~002 o 02
-0.10 !
GFDL-ESM4 — | 004 :%:E 04 00f-=----- ——— =
ssp245  -0.15 0.2 — T
~0.20 -0.06 -0.2
. 0.0 + g ————
\") v —04{V
-0.25 -0.08 -0.2

JFEMAMJ JASOND)J

m— Pan-Arctic

JFMAMJ JASONDJ

— CASW

— AS\\/

JFEMAMJ JASONDJ

= NASW

JFEMAMIJ JASONDJ

m— SASW

Fig. 5 Projected monthly trends in surface carbonate and water mass properties. Trends shown for each month for the years 2015 to 2050 and are
expressed in units per decade for surface calcium carbonate saturation with respect to aragonite (a, 4, mol m—3/mol m=3), surface pH (b), sea surface
temperature (¢, deg C), sea surface salinity (d, p.s.u.). Panels | and Il correspond to GFDL-CM4 and panels IlI-V correspond to GFDL-ESM4. Trends are for
the pan-Arctic average (black), Central Arctic Surface Waters (CASW, blue), more general Arctic Surface Waters (ASW, red), and North Atlantic Surface
Waters (NASW, purple), and Sub-Arctic Surface Waters (SASW, green) clusters. Black vertical bars denote the standard error of each monthly trend.
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regions are now projected to experience their strongest declines in
Q4 in the early summer months, the shortening of the wintertime
Arctic sea ice season is most responsible for the declines early in
the summer.

Discussion

The Arctic Ocean remains especially vulnerable to acidification
compared with the rest of the world’s oceans. The application of
unsupervised machine learning techniques has the ability to
objectively elucidate patterns and relationships among physical
ocean variables and components of the carbonate system that are
driving acidification. It is remarkable that the geographic
boundaries of the clusters are broadly consistent across the two
models tested here and across both lower and higher emissions
scenarios. CM4 and ESM4 have differences in their formulation
(see methods), including nominal horizontal ocean resolution,
ocean mixing parameterizations, biogeochemical model for-
mulation and complexity, and their transient climate sensitivity.
The surface OA response is primarily driven by changes in
physical ocean properties. Overall, our results suggest that within
the Arctic basin, changes in the surface freshwater balance and
alkalinity are the dominant controls on the regional variability in
OA projected among the clusters. Sustained efforts toward
reducing model biases in Arctic mixing and stratification, for
example, will play an important role in refining future projections
of acidification.

Arctic sea ice is a major differentiator between the two central
Arctic clusters identified in this study. The broad region in the
central Arctic where acidification occurs more rapidly than the
pan-Arctic average is defined by the observable present-day sea
ice extent. This provides a powerful metric that could be used to
constrain models and their future projections of OA. Arctic sea
ice, in addition to being critical for other climate processes such
as transient climate sensitivity and the sea ice-albedo feedback,
plays an important role in determining the trajectory of acid-
ification in the central Arctic. Continued efforts to reduce
uncertainty in future projections of sea ice will directly relate to
improvements in projections of Arctic surface acidification.

The abrupt nature of the transition from supersaturated waters
with respect to aragonite to undersaturated waters that are cor-
rosive poses a risk to some marine organisms where the decadal
timescale of this change is short compared to the longer (ie.,
evolutionary) timescales required for adaptation. The uncertainty
in this timing of the abrupt transition to corrosive surface waters
in the central Arctic is on the order of several decades across
models and across forcing scenarios, which is comparable to the
timescale of the change itself. Thus, narrowing the uncertainty in
the timing of this abrupt change is important from a human
perspective to properly assess and interpret risks to marine eco-
system environments. This timing difference is potentially related
to several factors that warrant further exploration, including
model formation, resolution, sea ice response, and transient cli-
mate sensitivity. However, there are clear indications based on the
monthly trends in Q4 that regions presently covered by multi-
year ice will experience the most rapid change in OA during the
first half of the 21st century.

While much of this surface analysis has direct impacts on the
epipelagic ocean, there is overlap with deep water formation
regions in the North Atlantic. More exploration is needed to
connect these surface changes to deep OA and the results of this
cluster analysis suggest starting locations for tracing the origins of
this signal. Additional work is also needed to effectively scale this
specific clustering methodology across the CMIP ensemble of
models. Factors such as model resolution, distributions of
responses, treatment of outliers, and biases in the mean state (for

example, sea ice) may limit the applicability of this specific
method to other model outputs. However, these results suggest
that with more exploration, robust generalized clustering meth-
ods could be developed to facilitate cross-model evaluation. The
development of sea-ice-based emergent constraints on future
Arctic OA would complement a growing body of existing
constraints!830 and ultimately aid in reducing uncertainty in
projections.

These results highlight differences in the responses of just three
fields—sea surface temperature, salinity, and surface pH—that
can isolate the dominant geographic regimes of OA when ana-
lyzed with unsupervised machine learning techniques. Moreover,
these regimes have very different timings of response and driving
mechanisms that are less apparent when traditional oceano-
graphic boundaries, such as all waters poleward of 65 °N, are used
for analysis. Physical climate changes through the melting of
Arctic sea ice, high-latitude warming associated with polar
amplification, and high-latitude changes in freshening associated
with an enhanced hydrologic cycle all contribute to the project
changes in pH across the clusters. More water mass-based ana-
lyses are needed to fully understand the implications of OA and
quantify uncertainty in projections throughout the world’s
oceans, particularly in sub-regions of the Arctic which can be
guided by the identified clusters. More specifically, a comparison
of the different clusters of Arctic OA with long time series
measurements®! and large-ensemble studies?? would help further
characterize the role of natural variability in the timing of adverse
impacts and narrow uncertainty in future projections.

Methods

Results from two coupled numerical climate models developed at the National
Oceanic and Atmospheric Administration’s Geophysical Fluid Dynamics Labora-
tory (NOAA-GFDL) were used in this study. The models differ principally in their
ocean model?3 resolution with GFDL-ESM4 using a 0.5° tri-polar horizontal grid
with mesoscale eddy parameterization and GFDL-CM4 using a higher eddy-
permitting 0.25° horizontal grid. Both models contain variants of a 1° atmosphere
component®$3> (AM4) with CM4 employing a simplified atmospheric chemistry
scheme while ESM4 uses an interactive chemistry scheme. Both models use GFDL’s
Sea Ice Simulator version 233.

The biogeochemical components used in both models differ in their complexity.
ESM4 uses version 2 of the Carbon Ocean And Lower Trophics (COBALTv2)
model?® comprised of 33 tracers capable of representing nutrient cycling and food
web dynamics. CM4 uses version 2 of the Biogeochemistry with Light, Iron,
Nutrients, and Gas (BLINGv2) model3%, which has reduced complexity compared
to COBALTV2 and six tracers that are more computationally efficient in the higher
resolution ocean model. While BLINGV2 resolves fewer explicit ecosystem inter-
actions than COBALTV2, both models perform well at representing the carbonate
cycle and the transport of dissolved inorganic carbon and total alkalinity
throughout the ocean3. Both models use the Model of the Ocean Carbonate
System (Mocsy) routines for simulating components of the carbonate system3’.
Details on the initialization and performance of COBALTv2 can be found in Stock
et al. 2020 and BLINGv2 in Dunne et al. 2020.

All simulations analyzed in this study3%-42 were part of NOAA-GFDL’s con-
tributions to the Sixth Coupled Model Intercomparison Project*> (CMIP6) and are
available through the Earth System Grid Federation (ESGF). The carbonate ion
concentration in equilibrium with aragonite (“co3satarag”) was not saved directly
for CM4 and was calculated offline with the Mocsy routines using monthly mean
fields of surface temperature, salinity, and dissolved inorganic carbon, total alka-
linity, and phosphate. Time-evolving climate forcing from greenhouse gases,
atmospheric aerosols and their precursors, volcanic emissions, and solar variations
are used in the historical simulations. Future climate projections are based on the
higher emissions (ssp585) and lower emissions (ssp245) scenarios?®. CM4 uses
prescribed concentrations of historical and future atmospheric CO,. ESM4 is run
with both prescribed atmospheric concentrations of CO, and fully interactive CO,
emissions that are consistent with the protocol of the Coupled Climate Carbon
Cycle Model Intercomparison Project* (C4MIP). Uncertainty estimates of the
time series analysis were calculated based on a Monte Carlo approach where
100 synthetic time series were generated by randomly selecting values from a
normal distribution where 4 and ¢ were obtained by filtering the detrended time
series with a 20-year boxcar window. Analysis code is available upon request.

Anthropogenic carbon inventory (C,,) was computed by integrating from the
start of the historical simulation at the year 1850 through the end of the year 2011.
An adjustment of 16.6 GtC was applied to both models to account for carbon
between the years 1791 and 1850 following estimates from impulse response
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functions documented in Bronselear et al. 2017. Patterns of depth-integrated C,y,
are compared to the 1° x 1° GLODAPv2 gridded climatology?® which is normalized
to the year 2002. This product derives C,,,; based on the transient time distribution
of CFC-12 measurements in the GLODAPv2 database.

Differences in time-average surface temperature, salinity, and pH poleward of 45 °N
for the years 2041-2060 compared to 1851-1950 were used as predictors for the
unsupervised machine learning clustering routines. Linear trends for SST, SSS, and
surface pH were computed at each grid point for the 500-year preindustrial control
simulations performed with both models and were used to detrend the historical and
future simulations. Native output from both models was regridded to a common 1° x 1°
grid and the land-sea mask from World Ocean Atlas was applied prior to analysis. An
isolation forest algorithm*> was used to remove both outliers and inliers in order to
maximize broad regional signals and reduce the likelihood that the clustering algorithm
would become overly focused in noisy regions. The t-distributed Stochastic Neighbor
Embedding (t-SNE) dimensionality reduction technique®® was applied to reduce the
three parameters to a two-dimensional space and to probabilistically collate data points
that are close together in the SST, SSS, and pH space while separating those groupings
from each other. This probabilistic projection was achieved by minimizing the
Kullback-Leibler divergence. Unlike the original SAGE methodology?? where t-SNE was
applied only once to the data per iteration, successive applications of t-SNE (1 = 4) were
found to successfully simplify the projection of the data (Supplemental Fig. 3). This
repeated projection was seen to robustly increase the separation among the clusters of
data while producing a reasonable trade-off between cluster separation and keeping the
number of clusters manageable for analysis. The repeated application of t-SNE creates a
highly complex objective function but is fundamentally the same as using only a single
application (pers. comm. van der Maaten). The perplexity parameter for t-SNE was set
to 500 as larger values capture more of the large-scale structure of the data compared to
smaller values. The density-based spatial clustering of applications with noise
(DBSCAN) algorithm*” was applied to the output of t-SNE with a minimum points
parameter equal to 500. The epsilon parameter was adjusted to achieve a target number
of clusters that were assessed visually. Given the stochastic nature of the t-SNE algo-
rithm, the clustering workflow was repeated 40 times for each model. The dominant
cluster assignment (i.e., the mode across the ensemble) is shown in Fig. 3 and the
hatching denotes where <80% of the ensemble members failed to assign the same
cluster designation to the grid point. Only clusters that had at least 50% areal overlap
between CM4 and ESM4 were analyzed. All the cluster assignments for each model are
shown in Supplemental Fig. 1.

The distributions of Arctic water masses in temperature, salinity, and pH space
are not uniform and a clustering methodology that performs well on data that have
complex underlying data density structures is needed. Initial work involving
commonly used methods, such as K-means and DBSCAN, yielded results that
over-emphasized localized density differences in water mass space. The metho-
dology described here strikes an appropriate balance of performing density-based
clustering while still retaining the broader scale water mass relationships in the
Arctic.

Data availability

The model data analyzed in this study are available through the Coupled Model
Intercomparison Project (CMIP6) and the ESGF at https://esgf-node.llnl.gov/search/
cmip6/. The anthropogenic carbon inventory data on the models’ native horizontal
grids from the historical ensemble simulations were not provided to ESGF and can be
downloaded from https://doi.org/10.5281/zenodo.6245223. The GLODAPv2
observationally-based gridded climatology was downloaded from https://
www.glodap.info/index.php/mapped-data-product/.

Code availability
Source code for the GFDL-CM4 and GFDL-ESM4 models area is publicly available at
https://github.com/NOAA-GFDL. Analysis code is available upon request.
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